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Abstract Numerical solutions are presented for steady two-dimensional symmetric flow past
parabolic bodies in a uniform stream parallel to its axis. For this study, the full Navier-Stokes
equations and energy equation in parabolic coordinates were solved. A second order accurate finite
difference scheme on a non-uniform grid was used. The solution domain does not exclude the leading
edge region as it is usually done with boundary layer flows. A wide range of Reynolds number �Re� is
studied for different values of Prandtl number �Pr�. It is found that the average Nusselt number �Nu)
increases as �Pr� increases meanwhile, �Nu) decreases with the increase in �Re�.

Nomenclature
a = nose radius of curvature
Cf = skin friction coefficient
D = reference length used to define the

Nusselt number
f = modified stream function
g = modified vorticity
h = modified temperature
ho = convection heat transfer coefficient
i = numerical index in streamwise

direction
ibuf = the index i at the beginning of the

buffer zone
j = numerical index in the wall normal

direction
Nu = Nusselt number
Nu = average Nusselt number
P = non-dimensional pressure
Pr = Prandtl number
Re = Reynolds number based on the nose

radius of curvature

Rex = Reynolds number based on the local
x-coordinate

ReL = Reynolds number based on �max

T = temperature
U1 = free-stream velocity
(u,v) = velocity components in the (x,y)

directions, respectively
(x,y) = Cartesian coordinates

Greek symbols
� = non-dimensional temperature
� = kinematic viscosity
��; �� = parabolic coordinates
� = fluid density
 = stream function
! = vorticity

Superscripts
* = dimensional quantity

1. Introduction
With the advent of fast computers, numerical solutions to the full Navier-
Stokes (N-S) equations are now possible using various numerical techniques.
Up to now, analytical studies of the flow over parabolic cylinders have been
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restricted to the hydrodynamic part of the problem. Van De Vooren and
Dijkstra (1970) have obtained a numerical solution to the N-S equations for
laminar incompressible flow past a semi-infinite flat plate. Later the numerical
method of solution has been improved by Botta and Dijkstra (1970). A common
feature of these studies is the use of parabolic coordinates which are known to
be optimal for the flat plate. Also Davis (1967) has studied the laminar flow
past a semi-infinite flat plate using parabolic coordinates. In his study, Davis
used a series truncation method in which the stream function is locally
expanded in a power series in the x-coordinate.

The natural extension of the flat-plate to other body shapes is the parabolic
body. Botta et al. (1972) have numerically solved the N-S equations for laminar
incompressible flow past a parabolic cylinder. Dennis and Walsh (1971)
obtained a numerical solution for the steady symmetric viscous flow past a
parabolic cylinder in a uniform stream. They obtained a solution using two-
dimensional finite difference approximations to the partial differential
equations for the stream function and vorticity. Their solutions cover the range
of Reynolds number (based on the nose radius of the cylinder) from 0:25 to1.
Davis (1972) has considered the symmetric laminar incompressible flow past a
parabolic cylinder. Davis numerically solved the N-S equations in stream
function and vorticity using an alternating direction implicit (ADI) method.
Careful attention was focused on extracting singularities from the problem in
the limit as Reynolds number goes to zero, and the study covered all values of
Reynolds number. Finally, Haddad (1995) and Haddad and Corke (1998) have
considered the receptivity of the boundary layer over parabolic bodies to
freestream acoustic wave. The flow over a parabola was one part (the basic
state) of the solution.

To the authors' best knowledge, there exists no previous study which deals
with the energy equation of the flow over parabolic bodies. The purpose of this
study is to investigate the forced convection laminar heat transfer
characteristics of the flow over parabolic bodies. For this purpose, the energy
equation as well as the Navier-Stokes equations are solved numerically. The
governing partial differential equations, in stream function, vorticity and
temperature, have been finite differenced on a non-uniform grid. Results are
presented for both the hydrodynamic and thermal parts of the problem.

2. Formulation of the problem
2.1 Governing equations
Figure 1 shows a schematic diagram for flow problem under consideration. Let
the infinite parabolic cylinder be given by the equation

x�y� � 1

2a
�y2 ÿ a2� �1�

where a is recognized as the nose radius of curvature.
For steady laminar incompressible fluid flow with constant thermophysical

properties, the non-dimensional N-S equations and energy equation in
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parabolic coordinates take the form
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where the following set of variables have been introduced to non-
dimensionalize the variables:

x � x�

�=U1� � y � y�

�=U1� � ! � !�

U 21=�
ÿ �

 �  
�

�
� � T� ÿ T�1

T�w ÿ T�1

�5�

In addition, the parabolic coordinates ��; �� are related to the Cartesian
coordinates �x; y� by

�x� iy� � �� � i��2
2

�6�

Therefore, the surface of the parabola is located at �w � Re1=2, where Re is the
Reynolds number based on the nose radius of curvature and i � ������ÿ1

p
.

In order to remove the singularity at the leading edge of the flat plate, we
follow Davis (1972) and introduce the new variables f , g and h where

 � �f �; �� �; ! � ÿ �

�2 � �2� � g �; �� �; � � ÿ �

�2 � �2� � h �; �� � �7�

Figure 1.
Schematic diagram for a
parabolic body in a
uniform stream
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The new dependent variables are then governed by the following equations

f�� ÿ g � f�� � 2

�
f� � 0 �8�

g�� � f � �f� ÿ 4�

�2 � �2

� �
g� � �2 ÿ �2

�2 � �2
f� ÿ 2�

�2 � �2
f � �f�
ÿ �� �

g ÿ �g� f� � 4

�2 � �2

� �
� g�� � 2

�
g� � 0

�9�

h�� � Pr f � �f�
ÿ �ÿ 4�

�2 � �2

� �
h� � Pr

�2 ÿ �2

�2 � �2
f� ÿ 2�

�2 � �2
f � �f�
ÿ �� �

hÿ �h� Prf� � 4

�2 � �2

� �
� h�� � 2

�
h� � 0

�10�

These equations are changed from elliptic to parabolic when the last two terms in
each equation are neglected. This fact had been exploited by Davis (1972) to
formulate an efficient numerical solution.

In order to evaluate the pressure on the parabolic surface, we apply the x-
momentum equation at the surface and then change the Cartesian variables
(x,y) to parabolic variables (�,�) to get

@p

@�
� ÿ @!

@�
�11�

� �

�2 � �2

@g

@�
ÿ 2�

�2 � �2
g

� �
�12�

Following Davis (1972), we introduce the following transformation to remove
the singularity from the pressure expression at the leading edge of the flat plate

P � pÿ �

��2 � �2� g�0;Re1=2� �13�

Thus

@P

@�
� �

�2 � �2

@g

@�
ÿ 2�

�2 � �2
�g ÿ go�

� �
�14�

where go � g�0;Re1=2�.
The local skin friction coefficient is given by

Cf � ��w
�U 21

� @
2 

@y2
jw �15�
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Applying the stream function equation at the wall yields

@2 

@y2
jw � ÿ! �16�

Therefore

Cf �ÿ !jw
� �

��2 � Re� g��;Re1=2� �17�

Finally, the local Nusselt number is defined as

Nu � hoD
�

k
�18�

where ho is the convective heat transfer coefficient which is given by

ho � k

T�w ÿ T�1
ÿ � @T�

@y�
jw �19�

Therefore, by non-dimensionalizing the variables and taking the length
D � �max,

Nu��� � �max
@�

@y
jw �20�

and in parabolic variables

Nu��� � ��max

�2 � �2
w

ÿ �2
�h� � �wh�
ÿ �ÿ �w�max 3�2 ÿ �2

w

ÿ �
�2 � �2

w

ÿ �3
h �21�

2.2 Boundary conditions
At the wall, we assume the no-slip, no-penetration boundary conditions. In
addition, the stream function equation was applied at the wall to get a
boundary condition on the wall vorticity, and the surface is assumed to be
isothermal. That is

at � � Re1=2 : f � 0;
@f

@�
� 0; g � f�� and h � 1 �22�

At the freestream, potential flow conditions are prevailing. In addition, we
assume isothermal freestream. That is

as �!1 :
@f

@�
! 1; g ! 0 and h! 0 �23�



Navier-Stokes
and energy

equations

85

3. Numerical method of solution
The governing equations are finite differenced using a second order accurate
finite difference scheme on a non-uniform grid. A uniform grid was first
generated and then Robert's stretching transformation (Anderson et al., 1984)
was applied in both streamwise and wall normal direction in order to cluster
more points near the leading edge in one direction and near the wall in the other
direction. The governing equations were linearized using Newton's
linearization technique. Three points central differences were used whenever
possible (interior points) otherwise backward or forward differences were used
as applicable (boundary points). The resulting system of linear algebraic
equations was solved simultaneously by iteration using the proper LINPACK
subroutines with the coefficient matrix being of the banded matrix type. More
details on the numerical method are given by Maqableh (1997). In general, the
solution required seven iterations to converge with a max local iteration error
� 10ÿ5. Solutions are obtained using the digital unix (alpha processor)
workstation.

It is worthy of mention here that it is necessary to reduce the number of
boundary conditions at the wall from four to three. This was accomplished by
finite differentiation of the first two of these boundary conditions, then
substituting one equation into the other, thereby the two boundary conditions
are; set into one equation. In addition, one should note that the numerical plane
must be finite in both streamwise and wall normal direction. It is well-known
that for a parabolic cylinder the flow proceeds without separation from
stagnation point flow at the nose to Blasius flow farther downstream. Based on
the study made by Haddad (1995) and Haddad and Corke (1998), the freestream
is located at a distance from the wall that is equivalent to ten times the
downstream Blasius boundary layer thickness on a flat plate of the same length
as the parabola. Also, in the streamwise direction, the outflow boundary is
located at a distance from the leading edge far enough for the Blasius flow to be
valid.

Davis (1972) had argued that excluding the elliptic terms (the last two terms)
in each of the governing equations results in equations which contain both the
first order boundary layer terms and the terms for the second order curvature
correction. Based on this, the boundary conditions at the outflow are derived by
applying the governing equations at the outflow with the elliptic terms being
dropped out. This treatment has the advantage that we are not imposing any
solution at downstream infinity (e.g. Blasius solution); nevertheless, we can still
compare our solution with the flat plate Blasius solution to validate our
approach. To implement this, a buffer zone was specified in which the elliptic
terms in the governing equations have been multiplied by a weighting factor, s.
The weighting factor was a function of streamwise location only. At the
beginning of the buffer zone, s � 1. At the end of the buffer zone which
corresponds to the outflow boundary, s � 0. To smoothly transition from 1 to 0,
the weighting factor was given the following form
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s�i� � 1� tanh�arg�
2

�24�

where

arg � 4 1ÿ 2�i ÿ ibuf �
�Imaxÿ ibuf �

� �
�25�

where i is the numerical index in the streamwise direction and ibuf is the index
i at the beginning of the buffer-zone.

4. Results and discussion
4.1 Solution independency
Numerical test calculations were carried out to evaluate the effect of grid size
(i.e. number of grid points) on the obtained solution. Attention was focused on
the wall vorticity to judge the solution sensitivity. It was found that the
numerical results are more sensitive to the number of grid points in the wall
normal direction � Jmax� than in the streamwise direction �Imax�. Almost
identical results were obtained for the cases with Imax � 150 and Imax � 350
whereas significant change in the solution has occurred when Jmax is changed
from 30 to 33. The solution was invariant for
Jmax > 33; thusagridsizeof 200\times 36pointswasusedthroughoutthisstudy:

4.2 Pressure distribution
Using the pressure at downstream infinity as a boundary condition, the
surface's pressure can be found by integrating from downstream infinity back
along the surface.

Equation (14) was integrated using the trapezoidal rule. The results of the
integration for different cases of Reynolds number are shown in Figure 2. It can
be seen that the pressure gradient everywhere is favourable and the local
pressure at the nose increases with Reynolds number. The results are in
excellent agreement with those of Davis (1972).

4.3 Skin friction distribution
Skin friction distribution over parabolas at various Reynolds numbers are
shown in Figure 3. These distributions are qualitatively similar to the pressure
distributions in Figure 2. It can be noted that the more blunt the body, the
larger is the local skin friction, with the maximum value being at the leading
edge. Obviously, our results agree very well with those of Davis (1972).

4.4 Velocity distribution
Velocity profiles normal to the wall at different stations on the parabolic
surface are obtained for different values of Re. In all cases, these profiles
develop into a Blasius profile away from the leading edge, as expected. This
fact is clearly observed in Figure 4 where one of the velocity profiles far
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Figure 2.
Pressure distribution on

a parabolic body

Figure 3.
Skin friction distribution

on a parabolic body
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downstream is compared with Blasius profile for the cases Re � 0 (flat plate)
and Re � 100 (parabolic cylinder). This figure clearly shows that these profiles
are identical.

To see the effect of Re on the downstream distance, measured from the
leading edge, required by the flow to develop into Blasius flow, the location of
the first velocity profile (expressed as �Blasius) which matches the Blasius profile
was plotted versus Re. The result is shown in Figure 5 where it can be seen that
the flow required to travel farther downstream away from the leading edge in
order to develop into Blasius flow as Reynolds number is increased.

4.5 Temperature distribution
Temperature profiles normal to the wall at different stations on the parabolic
surface are obtained for different values of Re. To validate our results for the
thermal part of the problem, the temperature profile of the flow over flat plate
�Re � 0� and away from the leading edge is compared with those presented by
Schlichting (1979) for different values of Prandtl number. The comparison is
shown in Figure 6 where it can be seen that the agreement is excellent.

4.6 Nusselt number distribution
We first consider the case of flat plate �Re � 0� where the effect of Prandtl
number on Nusselt number distribution is shown in Figure 7. These
distributions have similar trends in that they start with a maximum value at

Figure 4.
Comparison of
downstream velocity
profile with Blasius
profile
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Figure 5.
Effect of bluntness on

the first Blasius profile
location

Figure 6.
Downstream

temperature profiles at
different (Pr)
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the leading edge and asymptote farther downstream. The corresponding
distributions for the case of parabolic cylinder �Re � 100� are shown in Figure
8. In the vicinity of the leading edge the distributions experience a peak before
they start to asymptote downstream. This can be attributed to the fact that at
the leading edge the flow is a localized accelerating stagnation point flow
(Hieminz flow). This is expected to enhance the mixing action locally and thus
leads to higher values of Nusselt number.

To see the effect of the bluntness (i.e. Reynolds number) on Nusselt number
distribution, Nusselt number distributions are plotted again for different values
of Reynolds number and for Pr � 1. This is shown in Figure 9 where it can be
noted that these distributions asymptote to the same value far downstream at
the region where Blasius flow holds. The bluntness is expected to affect the
flow near the leading edge more than that away from it, and this is exactly
what Figure 9 displays.

Finally, the behaviour of the average Nusselt number is presented in Figure
10. It is found that the average Nusselt number increases as the Prandtl number
increases. This can be attributed to the decreased thickness of the thermal
boundary layer associated with the increase in the Prandtl number. On the
other hand, bluntness (increase in Re) is found to decrease the average Nusselt
number.

Figure 7.
Nusselt number
distribution on a flat
plate (Re = 0)
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Figure 8.
Nusselt number

distribution on a
parabolic body

(Re = 100)

Figure 9.
Effect of bluntness on

Nusselt number
distribution; Pr = 1
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5. Conclusions
Numerical solutions of the full Navier-Stokes and energy equations that govern
the steady two-dimensional symmetric flow past parabolic bodies are
presented. A second order accurate finite difference scheme on a non-uniform
grid was used to investigate the effect of the problem parameters (e.g. Reynolds
number (Re), Prandtl number (Pr)) on the hydrodynamics and heat transfer
characteristics of the flow. On the hydrodynamic part, it is found that our
results compare very well with those obtained by Davis (1972). This was done
to validate our code and results. On the heat transfer part, it is found that the
average Nusselt number (Nu) increases as the Prandtl number (Pr) increases;
meanwhile, the average Nusselt number (Nu) decreases with the increase in the
Reynolds number (Re).
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